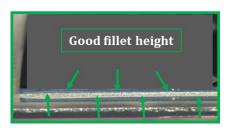

Hybrid sintering dieattach material with printing process for power semiconductor

TANAKA KIKINZOKU SINGAPORE Ag Adhesive Material R&D sec.


Koyo Kobori 7 May 2019

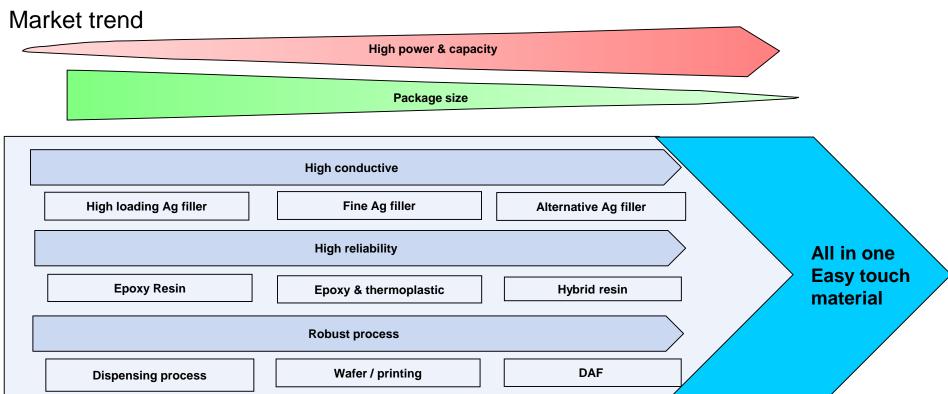
Motivation

Dispensing process

Printing process

Recently power package size is getting smaller and large capacity. Required dieattach characteristic material is higher thermal conductivity, reliability and suitable assemble process.

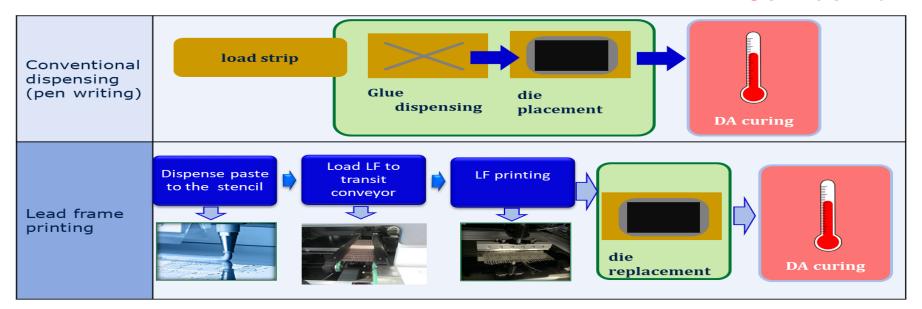
Tanaka has been developing hybrid sintering material for solder alternative, RF device and so on. For instance, it is facing issue fillet height for thinner die using conventional die attach process . Tanaka is working out to resolve glue creeping issue using improved version of TS9854 and new material formulation. However, chip thickness with hybrid sintering paste is a big challenge for the workability. Tanaka introduce dispensable and printable hybrid sintering paste.


■ Objective

- -To assess TS9854 hybrid sintering process characteristic and high reliability.
- -To judge whether TS9854 workable dispensing process and printing in house criteria.
- -To propose hybrid sintering dieattach material with good performance and robust process.

■ Approach

- -To design and formulate silver fine filler, resin system and solvent for hybrid sinter material.
- -To evaluate die shear value, thermal conductivity, volume resistivity and physical reliability.
- -To check dispensability and printability with DA process for our device in house data.


High thermal conductive die attach material

- -Thermal conductivity control Ag powder loading, size and shape.
- -High reliability is contributed by resin system and metal bonding.
- -Customized all process by resin system, suitable Ag filler and solvent.

Die attach process technology

Confidential

■ Die attach process for thin wafer

Glue Dispensing	Wafer Printing	LF Printing	DAF
■ Dispensing⇒DA⇒Cure	 Printing⇒Cure⇒laminate⇒ Dicing⇒DA⇒Cure 	 Printing⇒DA⇒Cure 	■ Laminate⇒Dicing⇒DA ⇒Cure
 Accessible for all type of chip size Easy to convert /set-up for different package. transfer multiple die size substrate Easy process 	 Uniformly of fillet height Consistency in BLT/TILT Better thermal and electrical properties than dispensing No creeping Controlled BLT & fillet No bleed 	 Can run for <60um wafer thickness Better processability than dispensing for thinner die. No fillet height Controlled BLT & fillet Easy process 	 No filler height Controlled BLT & fillet No bleed
Above 100um	■ >60um	■ >60um	■ >60um
 Filler height Bleed out Tack time Die tilt Insufficient coverage 	 Less wetting to LF back side Compatible dicing tape Flying die Process interaction 	 Special tool per die size Bleed Tack time Not B-staged chip to pad clearance 	Supply roll materialProcess interaction
	 Dispensing⇒DA⇒Cure Accessible for all type of chip size Easy to convert /set-up for different package. transfer multiple die size substrate Easy process Above 100um Filler height Bleed out Tack time Die tilt 	 Dispensing⇒DA⇒Cure Accessible for all type of chip size Easy to convert /set-up for different package. transfer multiple die size substrate Easy process Above 100um Filler height Bleed out Tack time Dispensing⇒Cure⇒laminate⇒ Dicing⇒Cure Uniformly of fillet height Consistency in BLT/TILT Better thermal and electrical properties than dispensing No creeping Controlled BLT & fillet No bleed Less wetting to LF back side Compatible dicing tape Flying die Process interaction 	 Dispensing⇒DA⇒Cure Accessible for all type of chip size Easy to convert /set-up for different package. transfer multiple die size substrate Easy process Above 100um Filler height Tack time Dispensing⇒DA⇒Cure Uniformly of fillet height Consistency in BLT/TILT Better thermal and electrical properties than dispensing No creeping No creeping Controlled BLT & fillet No bleed Special tool per die size Bleed Tack time Printing⇒DA⇒Cure Printing⇒DA⇒Cure Can run for <60um wafer thickness Better processability than dispensing for thinner die. No fillet height Controlled BLT & fillet Easy process Special tool per die size Bleed Tack time Process interaction Not B-staged

Concept hybrid sintering dieattach material

concept nybrid	t sintering diea	ttach material	Confidenti
	Ag-adhesive	Hybrid Ag-adhesive	Pure sinter -Ag
Feature	Low modulusGood adhesion to bare Si chip	High thermal conductivityHigh Hot-DSS	High thermal conductivityHigh Hot-DSS
Image	Si chip Ag Resin Lead Frame		Pores
Resin type	Epoxy, etc.	Ероху	
Conductive path	Contact of Ag powder	Sintering of Ag powder	Sintering of Ag powder
Thermal conductivity	<50W/mK	50~170W/mk	>150W/mK
Adhesion mechanism	Resin adhesion CH3 CH3 CH3 CH3 CH3 CH4 CH2 CH4 CH2 CH4 CH2 CH4 CH2 CH CH4 CH4	Resin adhesion CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4	Metallic bond

■ Characteristic

- -Good adhesion on Ag, Au and Cu.
- -Good reliability TC2000 no delami 1mmx1mm to10mmx10mm
- -High thermal conductivity > 100W / m.k
- -Lower resistivity

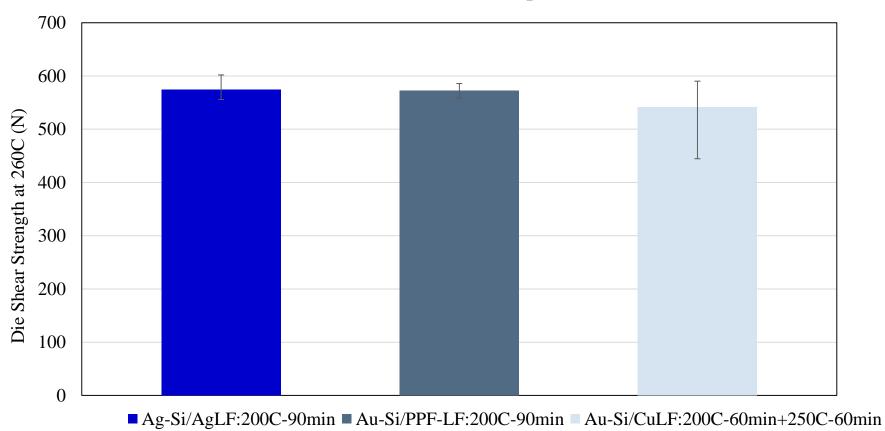
Process

- -Dispensable and Printable
- -Pressure less
- -No bleed out
- -void less
- -N2 and Air curable < 250 degC

Targeting package & application

Confidential

Chip	LF	< □ 3x3mm For Small Chip	3x3mm~5x5mm For Middle Chip	< 10x10mm For Large Chip
	Ag	SOP/HSOP/TO/TSSOP	SOP/QFP/QFN	LQFP
		30F/H30F/10/1330F	SOF/QFF/QFN	LQFF
Chip BSM Ni/Ag or Ni/Au	PPF	SOP/HSOP/TO/TSSOP	SOP/QFP/QFN	LQFP
		307/11307/10/13307	SUP/QFP/QFN	LQFF
	Cu	Train 15	Trum Control of the C	The state of the s
		SOP/HSOP/TO/TSSOP	SOP/QFP/QFN	LQFP


Application

- -Automotive
- -LED
- -RF device

Properties of printable hybrid sintering TS9854

		TS-9854	*
Feature		 High Thermal Conductivity Good Adhesion to bare Cu LF Printable/ Dispensable 	
Storage Condition		below -40°C in freezer	
Ag Content		88 wt%	Calculated after 850 °C firing
Viscosity		25 Pa.s	E-type 3° corn, 5rpm @ RT
Thixotropic Index		8	0.5rpm/5rpm
Volume Resistivity		10.0 x 10 ⁻⁶ Ω·cm	Resistivity meter
Die Cheen Chroneth	at RT	40 N/mm ²	2x2mm Si-die
Die Shear Strength	at 260°C	15 N/mm ²	(BSM:Ag) / Ag plated LF
	at RT	15,000 MPa	Measured by
Elastic Modulus	at 260°C	5,400 MPa	DMS
Coefficient of	α1	28 ppm/°C	
Thermal Expansion α2		28 ppm/°C	Measured by TMA
Tg		-	
Thermal Conductivity		120 W/m·K	Measured by Laser flush

HDSS (N):7x7mm chip

Hot shearing test condition :On hold 260 deg C, 1min

Physical reliability test by SAT

Confidential

■7x7mm Au sputtered chip/Cu LF

тс	Before imp	provement	TS-9	9854
TC	Chip side	LF side	Chip side	LF side
0 x				
1000x				
2000x	No data (Delamination)	No data (Delamination)		

Cure profile: 200C-60min +250C-90min in N2 (O2: 80ppm)

TCT condition: -50⇔150°C each 30min

SAT: Probe 140MHz (C-Scan)

Dispensability procedure for hybrid sintering

30g/10cc syringe

Good dispensability

Bad dispensability

Standard deviation σ

$$\mathbf{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

 $\eta_{\!\scriptscriptstyle L}$ \equiv The number of data points

 $ar{x}=$ The mean of the x_i

 $x_i =$ Each of the values of the data

Coefficient of variation C.V.

C.V.= σ/average

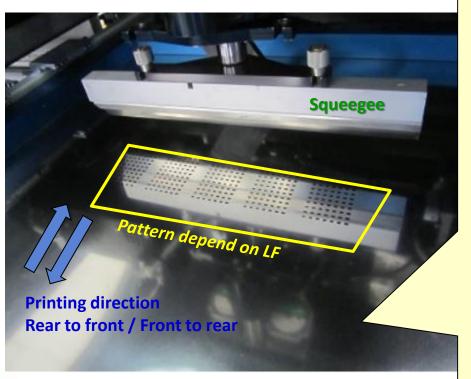
Comparing the standard deviation of the shape area to.get the variation of the two LF data.

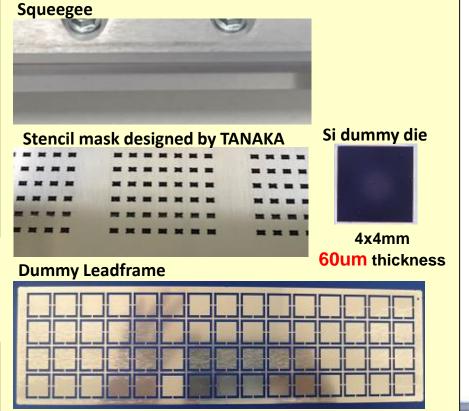
Target of Dispensability: CV=<5%

DA output response with dispensing process

Confidential

location	A45	A36	A27	A18	A9	M1
paste					21	
Top view						
coverage	100%	100%	100%	100%	100%	100%
Fillet height	30%	30%	50%	30%	30%	40%
BLT(um)	31.3	30.7	31.0	31.3	30.8	30.6
TILT(um)	3.8	4.0	5.0	4.7	4.7	3.7
Die placement(um)	4	4	4	5	3	4


(die size: 2x2mm 75um thickness)


Target: BLT **15-35**um, Tilt <20um, FH <75%, Coverage 100%

Printing tooling & parameter for thinner die

Printing process	2D printing
Sample	TS-9854
Stencil mask	thickness 50µm, designed by TANAKA
Printing force 5kg	
Printing speed	15mm/sec

DA output response with printing process

Confidential

Chip size 4x4mm 60um thickness

sample		TS-9	9854	
Design	SH05	SH06	SH07	SQ08
After printing				
DA top view (Coverage%)	(100%)	(100%)	Not covered at center of each length	(100%)
DA corner view (Fillet height%)	(50%)	(50%)	(60%)	(70%)
BLT (dry)	31.5	30.6	30.8	35.6
Tilt (dry)	4.3	4	9.3	6.3

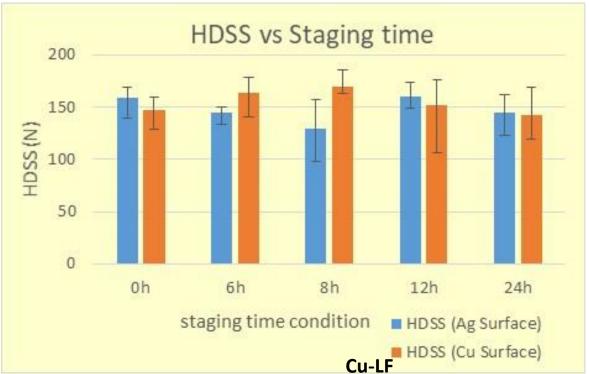
Design of SH05,06 & SQ08 (X, Y=102%) shows coverage 100% and fillet height <70%.

Tack time evaluation result with printing process

Chip size 4x4mm 60um thickness

Only 31	Ze 4x4mm ooum		Same DA parameters		
Des	ign: SH05		9854	were used during 0-6hr tack time evaluation	
Та	ack-time	0hr	2hr	4hr	6hr
Upper view					
С	overage	100%	100%	100%	100%
В	LT (wet)	35.3um	34.8um	34.7um	36.6um
Т	īlt (wet)	6.0um	4.3um	4.0um	5.8um
В	BLT (dry)	27.3um	28.9um	28.1um	31.3um
٦	Γilt (dry)	8.9um	6.5um	7.2um	10.9um
	Α	<50%	<50%	<50%	<50%
Fillet	В	<50%	<50%	<50%	<50%
height	С	<50%	<50%	<50%	<50%
	D	<50%	<50%	<50%	<50%

Between 0 and 6 hours BLT and TILT are stable and coverage (100%) &


F/H(<75%) have also achieved their targets.

Target: BLT 20-40um, Tilt <20um, FH <75%, Coverage 100%

Staging time evaluation with printing process

Confidential

Chip size 4x4mm 60um thickness

Ag-LF

<u> </u>				
0h	6h	8h	12h	24h
158	145	130	160	144

 Oh
 6h
 8h
 12h
 24h

 147
 164
 169
 151
 142

HTDSS value is stable from 0hr to 24hrs staging on both LF. However failure mode with Cu LF at 24hr staging shows Cu interfacial failure.

Void observation with staging time

Confidential

Chip size 4x4mm 60um thickness

No.	Check Items	Target			Staging	y time		
NO.	Check items	Target	0hr	6hr	8hr	12hr	(24hr)	Result
1	X-ray image	-			71			-
	Void ratio	<5%	<1%	<1.2%	<1%	<1.4%	<3.5%	Passed
2	Void observation (by SEM)	No variation	No variation				-	Passed
3	Delamination check (by SEM)	No delamination	No delamination				-	Passed
4	Hot-DSS (by DSS)	Within 20% change to 0hr DSS	-	<10%	<10%	<10%	(<10%)	Passed
5	Failure mode (by Microscope)	Cohesion		Cohe	(CuLF)	Passed		

Check items for staging time are all passed against our target. TS-9854 can be achieved 12hr of staging time.

Printable hybrid sintering results

Confidential

Paste type		TANAKA target	TS-9854
DSS wit	h bare CuLF	>30MPa	45
HDSS wi	th bare CuLF	>15MPa	20
Failure Mo	ode with CuLF	Cohesion	Cohesion
		Even	almost even
Pri	ntability	No tailing	no tailing
		No smearing	no smearing
	BLT	20-40um(Dry)	30 μm (dry)
	Tilt <20um		<10µm
	Coverage	100%	100%
	Fillet height	<75%	<75%
(wet)DA	Tack time	>2hr	6 hours
	Staging time	> 4hr	12hr
	Void	Single 5% Cum. 10%	Less than 1%
	Bleed out	<200 um	no bleed out

Hybrid sintering paste TS9854 is printable in printing process with leadframe and 4mmX4mm die size. Coverage 100% and <75% of F/H can be achieved with 60um thickness wafer. Tack time can be achieved >6hr with TS-9854. Staging time can be achieved 12hr.

Tanaka propose thin wafer and high reliability for power package.

Hybrid sintering die attach material TS9854

- -Hybrid sintering TS9854 is applicable dispensing process and printing process.
- =>Commercialized product TS9854 use for automotive power device with thin die.
- -Good reliability on back metallization chip 1mm to 10mm on Ag, PPF and Cu LF.
- =>It is contributed by metal bonding and resin adhesion.
- -TS9854 is printable various package.
 - =>Original designed printing mask & tooling for customer device.
 - =>It is adjusting suitable viscosity by solvent quantity.
- -TS9854 is good manufacturability.
 - =>Longer tack time, staging time and void less by solvent type with formulation.
- -Tanaka hybrid sintering can customize depend on requirement.

Confidential

Thank you!